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Abstract
The group of local unitary transformations acts on the space of n-qubit pure
states, decomposing it into orbits. In a previous paper we proved that a product
of singlet states (together with an unentangled qubit for a system with an odd
number of qubits) achieves the smallest possible orbit dimension, equal to 3n/2
for n even and (3n + 1)/2 for n odd, where n is the number of qubits. In this
paper we show that any state with minimum orbit dimension must be of this
form, and furthermore, such states are classified up to local unitary equivalence
by the sets of pairs of qubits entangled in singlets.

PACS number: 03.67.Mn

1. Introduction

Quantum entanglement has been identified as an important resource for quantum computing,
quantum communication and other applications [1, 2]. A fundamental theoretical problem is
to understand the types of entanglement that composite quantum systems can achieve.

Defining entanglement types as equivalence classes of quantum states under local unitary
(LU) equivalence is perhaps the most natural way to proceed in classifying entanglement
[3, 4]. The group of LU transformations acts on the space of quantum states, partitioning it
into LU orbits. Each orbit is a collection of locally equivalent quantum states that forms a
differentiable manifold with a certain dimension.

The classification of entanglement types has turned out to be a difficult problem. Most
of the progress in understanding multipartite entanglement has been for systems of only two
or three qubits [5–7]. Few results exist concerning the classification of n-qubit entanglement
types for arbitrary n.

A promising approach to the difficult problem of characterizing entanglement types is to
break the problem into two parts. First, identify the possible dimensions of LU orbits in the
state space. Then, identify the orbits that have each possible dimension. In [8], the present
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authors addressed the first part of this program by identifying the allowable range of orbit
dimensions for n-qubit quantum states to be 3n/2 to 3n for even n and (3n + 1)/2 to 3n for
odd n. The present paper begins the second part of the program by completely identifying all
orbits (entanglement types) with minimum dimension.

In this paper, we identify all n-qubit entanglement types that have a minimum orbit
dimension. States that have the minimum orbit dimension are, in some sense, the ‘rarest’
quantum states. We show that the only quantum states to achieve the minimum orbit dimension
are tensor products of singlet states (with a single unentangled qubit for n odd) and their LU
equivalents. This suggests a special role for the 2-qubit singlet state in the theory of n-qubit
quantum entanglement.

2. Notation and previous results

In this section we establish notation, some definitions, and state some results from our previous
paper [8] needed for the present paper. For the convenience of the reader, we give a list
(appendix A) of equation and statement numbers in the present paper with their matching
numbers in [8].

Let |0〉, |1〉 denote the standard computational basis for C
2 and write |i1i2 . . . in〉 for

|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 in (C2)⊗n. For a multi-index I = (i1i2 . . . in) with ik = 0, 1 for
1 � k � n, we will write |I 〉 to denote |i1i2 . . . in〉. Let ick denote the bit complement

ick =
{

0 if ik = 1
1 if ik = 0

and let Ik denote the multi-index

Ik := (
i1i2 · · · ik−1i

c
k ik+1 · · · in

)
obtained from I by taking the complement of the kth bit for 1 � k � n. Similarly, let Ikl

denote the multi-index

Ikl := (
i1i2 · · · ik−1i

c
k ik+1 · · · il−1i

c
l il+1 · · · in

)
obtained from I by taking the complement of the kth and lth bits for 1 � k < l � n.

Let H = (C2)⊗n denote the Hilbert space for a system of n qubits and let P(H) denote
the projectivization of H which is the state space of the system. We take the local unitary
group to be G = SU(2)n. Its Lie algebra LG = su(2)n is the space of n-tuples of traceless

skew-Hermitian 2 × 2 matrices. We choose A = iσz = [
i 0
0 −i

]
, B = iσy = [

0 1
−1 0

]
and

C = iσx = [
0 i
i 0

]
as a basis for su(2), where σx, σy, σz are the Pauli spin matrices. We define

elements Ak,Bk, Ck of LG for 1 � k � n to have A,B,C, respectively, in the kth coordinate
and zero elsewhere.

Ak =
(

0, . . . , 0,

[
i 0
0 −i

]
, 0, . . . , 0

)

Bk =
(

0, . . . , 0,

[
0 1

−1 0

]
, 0, . . . , 0

)

Ck =
(

0, . . . , 0,

[
0 i

i 0

]
, 0, . . . , 0

)
.

Given a state vector |ψ〉 = ∑
cI |I 〉, we have the following:

Ak|ψ〉 =
∑

I

i(−1)ik cI |I 〉 (1)
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Bk|ψ〉 =
∑

I

(−1)ik cIk
|I 〉 (2)

Ck|ψ〉 =
∑

I

icIk
|I 〉. (3)

Given a state vector |ψ〉 ∈ H , we define the 2n × (3n + 1) complex matrix M to be the
(3n + 1)-tuple of column vectors

M = (A1|ψ〉, B1|ψ〉, C1|ψ〉, . . . , An|ψ〉, Bn|ψ〉, Cn|ψ〉,−i|ψ〉). (4)

We view the matrix M and also its column vectors both as real and also as complex via the
standard identification

C
N ↔ R

2N

(5)
(z1, z2, . . . , zN) ↔ (a1, b1, a2, b2, . . . , aN , bN),

where zj = aj + ibj for 1 � j � N . The real rank of M gives the dimension of the G-orbit
of a state.

Proposition 2.1. Orbit dimension as rank of M. Let x ∈ P(H) be a state, let |ψ〉 be a Hilbert
space representative for x, and let M be the associated matrix constructed from the coordinates
of |ψ〉 as described above. Then we have

rankRM = dimOx + 1.

We denote by C the set

C = {A1|ψ〉, B1|ψ〉, C1|ψ〉, . . . , An|ψ〉, Bn|ψ〉, Cn|ψ〉,−i|ψ〉}
of columns of M, and for 1 � k � n we define the triple Tk ⊆ C to be the set of vectors

Tk = {Ak|ψ〉, Bk|ψ〉, Ck|ψ〉}. (6)

For a subset B ⊆ C, we write 〈B〉 to denote the real span of the column vectors contained in
B. For convenience, we write

〈
Ti1 , Ti2 , . . . , Tir

〉
to denote the real span

〈
Ti1 ∪ Ti2 ∪ · · · ∪ Tir

〉
of

a set of triples. We have the following facts about the dimensions of spans of sets of triples.

Proposition 2.2. Let Tk = {Ak|ψ〉, Bk|ψ〉, Ck|ψ〉} be a triple of columns of M. The three
vectors in the triple are orthogonal when viewed as real vectors.

Proposition 2.3. Main orthogonality proposition. Suppose that

dim
〈
Tj1 , Tj2 , . . . , Tjm

〉
< 3m

for some 1 � j1 < j2 < · · · < jm � n. Then there is a nonempty subset K ⊆ {j1, j2, . . . , jm}
containing an even number of elements such that there are two orthogonal vectors |ζk〉, |ηk〉 in
〈Tk〉, both of which are orthogonal to −i|ψ〉, Aj |ψ〉, Bj |ψ〉 and to Cj |ψ〉 for all k ∈ K, j �∈ K .

More can be said about a pair of triples which together span fewer than five dimensions.

Lemma 2.4. Suppose that for some 1 � l < l′ � n we have Al|ψ〉 = Al′ |ψ〉 and
Cl|ψ〉 = Cl′ |ψ〉. Then Ak|ψ〉, Bk|ψ〉 and Ck|ψ〉 are each orthogonal to −i|ψ〉 and to
Aj |ψ〉, Bj |ψ〉, Cj |ψ〉 for all k ∈ {l, l′}, j �∈ {l, l′}.
Proposition 2.5. Generalization of lemma 2.4. Suppose that dim〈Tl, Tl′ 〉 � 4 for some
1 � l < l′ � n. Then Ak|ψ〉, Bk|ψ〉 and Ck|ψ〉 are each orthogonal to −i|ψ〉 and to
Aj |ψ〉, Bj |ψ〉, Cj |ψ〉 for all k ∈ {l, l′}, j �∈ {l, l′}.
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We use propositions 2.2, 2.3 and 2.5 to establish the lower bound for the rank of M, and
therefore also for orbit dimension.

Proposition 2.6. Minimum rank of M. Let |ψ〉 ∈ H be a state vector, and let M be the matrix
associated with |ψ〉. We have

rankRM �




3n

2
+ 1 n even

3n + 1

2
+ 1 n odd.

A product of singlets (together with an unentangled qubit for n odd) achieves the lower bound
established in proposition 2.6. This establishes the minimum orbit dimension.

Theorem 2.7. For the local unitary group action on the state space for n qubits, the smallest
orbit dimension is

min{dimOx : x ∈ P(H)} =




3n

2
n even

3n + 1

2
n odd.

This concludes the statements of definitions and results from [8] to be used in the following.

3. Further results on ranks of sets of triples

In this section we develop more facts about ranks of sets of triples of the columns of the matrix
M associated with an n-qubit state vector |ψ〉 as described in the previous section. These
include strengthened versions of propositions 2.4, 2.5 and 2.6. We begin with a general fact
about local unitary invariance.

Proposition 3.1. The dimension of the span of a union of triples with or without the rightmost
column −i|ψ〉 is a local unitary invariant.

Proof. We prove the proposition for the case ‘with the rightmost column’. The same proof
works for the case ‘without the rightmost column’ by making the obvious changes.

Let Tj1 , Tj2 , . . . , Tjm
be a set of triples of columns of the matrix M associated with the

state vector |ψ〉. Let U = ∏n
i=1 Ui be an element of the local unitary group and let M ′ with

triples T ′
k = {AkU |ψ〉, BkU |ψ〉, CkU |ψ〉} be associated with the state |ψ ′〉 = U |ψ〉. Since U

is unitary, the dimension of the span

dim
〈
T ′

j1
∪ T ′

j2
∪ . . . ∪ T ′

jm
∪ {−i|ψ ′〉}〉

is equal to the dimension of the span of the set

(∗)

m⋃
i=1

{
U †Aji

U |ψ〉, U †Bji
U |ψ〉, U †Cji

U |ψ〉} ∪ {−i|ψ〉}.

Observe that

U †AkU = (
0, . . . , 0, U

†
kAUk, 0, . . . , 0

) = (
0, . . . , 0, Ad

(
U

†
k

)
(A), 0, . . . , 0

)
U †BkU = (

0, . . . , 0, U
†
kBUk, 0, . . . , 0

) = (
0, . . . , 0, Ad

(
U

†
k

)
(B), 0, . . . , 0

)
U †CkU = (

0, . . . , 0, U
†
kCUk, 0, . . . , 0

) = (
0, . . . , 0, Ad

(
U

†
k

)
(C), 0, . . . , 0

)



Classification of n-qubit states with minimum orbit dimension 2447

where the zeros occur in all but the kth coordinate and Ad: SU(2) → SO(su(2)) denotes the
adjoint representation of SU(2) on its Lie Algebra. It follows that the span of the set (∗) lies
inside the span of the set

(∗∗)

m⋃
i=1

{
Aji

|ψ〉, Bji
|ψ〉, Cji

|ψ〉} ∪ {−i|ψ〉}.

and hence that

dim
〈
T ′

j1
∪ T ′

j2
∪ . . . ∪ T ′

jm
∪ {−i|ψ ′〉}〉 � dim

〈
Tj1 ∪ Tj2 ∪ . . . ∪ Tjm

∪ {−i|ψ〉}〉.
Reversing the roles of |ψ〉 and |ψ ′〉 yields that the span of the set (∗∗) lies inside the span of
the set (∗), and hence that

dim
〈
T ′

j1
∪ T ′

j2
∪ . . . ∪ T ′

jm
∪ {−i|ψ ′〉}〉 � dim

〈
Tj1 ∪ Tj2 ∪ . . . ∪ Tjm

∪ {−i|ψ〉}〉.
This concludes the proof. �

Next we consider the case of two triples which together span five dimensions.

Proposition 3.2. Suppose that dim〈Tl, Tl′ 〉 = 5 for some 1 � l < l′ � n. Then there are
four independent vectors |ζl〉, |ηl〉 ∈ Tl , |ζl′ 〉, |ηl′ 〉 ∈ Tl′ , which are orthogonal to −i|ψ〉 and
to Aj |ψ〉, Bj |ψ〉, Cj |ψ〉 for all j �∈ {l, l′}.
Proof. Applying the main orthogonality proposition 2.3, the only new claim made in the
statement of 3.2 is that the vectors |ζk〉, |ηk〉 ∈ Tk, k ∈ {l, l′} are independent. In the proof of
proposition 2.3 there is a unitary transformation U : H → H , such that

U |ζk〉 = BkU |ψ〉 U |ηk〉 = CkU |ψ〉
for k ∈ {l, l′} and AlU |ψ〉 is collinear with Al′U |ψ〉. Since dim〈Tl, Tl′ 〉 = 5, the span of
{AkU |ψ〉, BkU |ψ〉, CkU |ψ〉: k = l, l′} is also five-dimensional by proposition 3.1. Thus
the collinearity of AlU |ψ〉 and Al′U |ψ〉 implies that U |ζl〉, U |ηl〉, U |ζl′ 〉 and U |ηl′ 〉 are
independent, and therefore that |ζl〉, |ηl〉, |ζl′ 〉 and |ηl′ 〉 are independent. �

Next, a small observation proves a stronger version of lemma 2.4.

Lemma 3.3. Suppose that for some 1 � l < l′ � n, we have Al|ψ〉 = Al′ |ψ〉 and
Cl|ψ〉 = Cl′ |ψ〉. Then Bl|ψ〉 = −Bl′ |ψ〉, the dimension of 〈Tl, Tl′ 〉 is 3, and 〈Tl, Tl′ 〉 is
orthogonal to −i|ψ〉 and to Aj |ψ〉, Bj |ψ〉, Cj |ψ〉 for all j �∈ {l, l′}.
Proof. We only need to prove that Bl|ψ〉 = −Bl′ |ψ〉. The rest of the statement follows from
lemma 2.4. Equation (1) and the hypothesis Al|ψ〉 = Al′ |ψ〉 imply that (−1)il cI = (−1)il′ cI ,
so if cI �= 0 then il = il′ mod 2. It follows that if cIl

�= 0 then il = il′ + 1 mod 2. Equation (3)
and the hypothesis Cl|ψ〉 = Cl′ |ψ〉 imply that cIl

= cIl′ for all I. Hence, for all I we have

〈I |Bl|ψ〉 = (−1)il cIl
= (−1)il′ +1cIl′ = −〈I |Bl′ |ψ〉.

This establishes the claim. �

The strengthened lemma 3.3 yields the following strengthened version of proposition 2.5.
We omit the proof because it requires only a minor change to apply 3.3 in the proof of
proposition 2.5.

Proposition 3.4. Strengthened version of proposition 2.5. Let |ψ〉 be a state vector and
let M be its associated matrix. Suppose that dim〈Tl, Tl′ 〉 � 4 for some 1 � l < l′ � n.
Then |ψ〉 is local unitary equivalent to a state vector |ψ ′〉 such that Al|ψ ′〉 = Al′ |ψ ′〉,
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Bl|ψ ′〉 = −Bl′ |ψ ′〉, Cl|ψ ′〉 = Cl′ |ψ ′〉, the dimension of 〈Tl, Tl′ 〉 is 3, and 〈Tl, Tl′ 〉 is orthogonal
to −i|ψ〉 and to Aj |ψ〉, Bj |ψ〉, Cj |ψ〉 for all j �∈ {l, l′}.

Next, we state and prove a stronger version of proposition 2.6.

Proposition 3.5. Minimum rank for submatrices of M. Let S = Ti1 ∪ Ti2 ∪ · · · ∪ Tiq ∪ {−i|ψ〉}
be a union of q triples together with the rightmost column −i|ψ〉 of M. Then

dim〈S〉 �




3q

2
+ 1 q even

3q + 1

2
+ 1 q odd.

Proof. Let S0 ⊆ S be a union of some number p of triples, maximal with respect to the
property that 〈S0〉 contains a subspace W for which

(i) dim W �




3p

2
p even

3p + 1

2
p odd

, and

(ii) W ⊥ 〈C\S0〉.
We separate the argument into cases. We show that in every case, either proposition 3.5

holds or we can derive a contradiction by constructing a superset S1 such that S0 ⊆ S1 ⊆ S,
and S1 is the union of some number p′ > p triples and contains a subspace W ′ satisfying
properties (i) and (ii) with p′ in place of p. The construction of S1 violates the maximality of
S0 and therefore rules out the case in question.

Case 1: Suppose that p = q. Then proposition 3.5 holds.

Case 2: Suppose that p < q and that the triples Tj1 , Tj2 , . . . , Tjq−p
in S\S0 have the maximum

possible span, that is,

dim
〈
Tj1 , Tj2 , . . . , Tjq−p

〉 = 3(q − p).

Properties (i) and (ii) imply that

dim〈S〉 � dim W + dim〈S\S0〉
� 3p

2
+ 3(q − p)

= 6q − 3p

2

� 6q − (3q − 3)

2
(since p � q − 1)

= 3q + 3

2

= 3q + 1

2
+ 1

and so proposition 3.5 holds. Note that if p = q − 1, the hypothesis of full span is met by
proposition 2.2. Therefore, in the remaining cases we need only to consider p � q − 2.

Case 3: Suppose p � q−2 and that there is a pair of triples Tl, Tl′ inS\S0 with dim〈Tl, Tl′ 〉 � 4.
Let S1 = S0 ∪ Tl ∪ Tl′ , let p′ = p + 2, and let W ′ = W ⊕ 〈Tl ∪ Tl′ 〉, where ‘⊕’ denotes
the orthogonal direct sum. That the sum is orthogonal is guaranteed by property (ii) for
W . Proposition 2.5 implies that property (ii) also holds for the pair (S1,W

′) and that



Classification of n-qubit states with minimum orbit dimension 2449

dim W ′ � dim W + 3 (in fact, we have equality by proposition 3.4). It follows that if p
is even, so is p′ and we have

dim W ′ � 3p

2
+ 3 = 3p + 6

2
= 3(p + 2)

2
= 3p′

2
and similarly if p and p′ are odd we have

dim W ′ � 3p + 1

2
+ 3 = 3p′ + 1

2
so (S1,W

′) satisfies property (i). Thus S1 violates the maximality of S0, so we conclude that
the hypothesis of case 3 is impossible.

Case 4: Suppose p � q − 2 and that there is a pair of triples Tl, Tl′ in S\S0 such that
dim〈Tl, Tl′ 〉 = 5. Applying proposition 3.2, we have four independent vectors

|ζl〉, |ηl〉 ∈ 〈Tl〉, |ζl′ 〉, |ηl′ 〉 ∈ 〈Tl′ 〉
orthogonal to all column vectors of M in columns outside of triples Tl, Tl′ , so once again
S1 = S0 ∪ Tl ∪ Tl′ with the subspace

W ′ = W ⊕ 〈|ζl〉, |ηl〉, |ζl′ 〉, |ηl′ 〉〉
violates the maximality of S0. We conclude that the hypothesis of case 4 is impossible.

Case 5: The only remaining possibility is that p � q − 3. Let T = {
Tj1 , Tj2 , . . . , Tjm

}
be a

set of triples in S\S0 with m � 3 minimal with respect to the property

dim
〈
Tj1 , Tj2 , . . . , Tjm

〉
< 3m.

Applying proposition 2.3, we have two vectors

|ζk〉, |ηk〉 ∈ 〈Tk〉
for each of the m′ � 2 elements k ∈ K . Let

S1 = S0 ∪
(⋃

k∈K

Tk

)
,

let p′ = p + m′, and let

W ′ = W ⊕ 〈{|ζk〉, |ηk〉}k∈K〉.
Note that property (ii) holds for (S1,W

′). If m′ < m, then the 2m′ vectors in {|ζk〉, |ηk〉}k∈K

are independent by the minimality of T , so we have

dim W ′ � dim W + 2m′ � 3p

2
+ 2m′ = 3p′ + m′

2
� 3p′ + 1

2
so property (i) holds for (S1,W

′), but this contradicts the maximality of S0. Finally, if m′ = m,
then m � 4 (since m′ is even) and at least 2(m − 1) of the vectors in {|ζk〉, |ηk〉}k∈K must be
independent, again by the minimality of T . If p is even, then p′ = p + m is also even and we
have

dim W ′ � dim W + 2(m − 1) � 3p

2
+ 2(m − 1) = 3p′ + m − 4

2
� 3p′

2
.

If p is odd, then p′ = p + m is odd and we have

dim W ′ � dim W + 2(m − 1) � 3p + 1

2
+ 2(m − 1) = 3p′ + m − 3

2
� 3p′ + 1

2
.

Thus S1 with the subspace W ′ violates the maximality of S0. We conclude that the hypothesis
of case 5 is impossible.
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Having exhausted all possible cases, this completes the proof of proposition 3.5. �

Next we state and prove a general statement about additivity of ranks for bipartite states.

Proposition 3.6. Let |ψ〉 = |ψ1〉⊗|ψ2〉 be a state vector for a bipartite state, where |ψj 〉 is an
nj -qubit state vector for j = 1, 2. Let M be the matrix associated with |ψ〉, and let Mj denote
the associated matrix for |ψj 〉 for j = 1, 2. Let S1 and S2 be the following submatrices of M:

S1 = T1 ∪ T2 ∪ · · · ∪ Tn1 ∪ {−i|ψ〉}
S2 = Tn1+1 ∪ Tn2+2 ∪ · · · ∪ Tn1+n2 ∪ {−i|ψ〉}

and let B′ = T ′
j1

∪ T ′
j2

∪ . . . ∪ T ′
jm

be a union of triples in M1 with corresponding union
B = Tj1 ∪ Tj2 ∪ . . . ∪ Tjm

in M. We have

(i) rankRM − 1 = (rankRM1 − 1) + (rankRM2 − 1),
(ii) rankRMj = dim〈Sj 〉 for j = 1, 2, and

(iii) dim〈B′〉 = dim〈B〉.

Proof. Let x denote the state represented by |ψ〉 and let G denote the local unitary group. Let
xj denote the state represented by |ψj 〉, and let Gj denote the local unitary group for j = 1, 2,
so we have G = G1 × G2.

It is easy to see that the G-orbit of x is diffeomorphic to the product of the Gj -orbits of
the xj , so dimensions add.

dim Gx = dim G1x1 + dim G2x2

Applying proposition 2.1, it follows immediately that (i) holds.
For (ii), observe that the columns of Sj are simply the columns of Mj tensored with |ψ2〉.

The same reasoning applied to the subset B ⊆ S1 establishes (iii). �

We end this section with statements about factoring singlets and unentangled qubits.

Proposition 3.7. There are two triples Tl, Tl′ with dim〈Tl, Tl′ 〉 = 3 if and only if the state
factors as a product of a singlet in qubits l, l′ times a state in the remaining qubits.

Proof. Without loss of generality, let us renumber the qubits so that l = 1, l′ = 2.
First we prove the ‘if’ part of the statement. Let |ψ〉 = |s〉 ⊗ |φ〉, where |s〉 is a singlet

in qubits 1 and 2, and |φ〉 is an (n − 2)-qubit state. Then |ψ〉 is local unitary equivalent to
|ψ ′〉 = |s ′〉 ⊗ |φ〉, where |s ′〉 = |00〉 + |11〉. A simple calculation shows that the two triples
in the matrix for a 2-qubit singlet state vector |s ′〉 together span three dimensions. Therefore,
by proposition 3.6 (iii), the dimension of the span of triples 1 and 2 in the matrix for |ψ ′〉 is
also 3. Since the rank of unions of triples is local unitary invariant by proposition 3.1, we
conclude that the dimension of the span of triples 1 and 2 in the matrix for |ψ〉 is also 3.

Next we prove ‘only if’. Let |ψ〉 be a state vector for which dim〈T1, T2〉 = 3.
By proposition 3.4, |ψ〉 is local unitary equivalent to the state vector |ψ ′〉 for which
A1|ψ ′〉 = A2|ψ ′〉 and C1|ψ ′〉 = C2|ψ ′〉. Equation (1) and the hypothesis A1|ψ〉 = A2|ψ〉
imply that (−1)i1cI = (−1)i2cI , so if cI �= 0 then i1 = i2 mod 2, so every I for which
cI �= 0 has either both zeros or ones in the first two indices. Equation (3) and the hypothesis
C1|ψ〉 = C2|ψ〉 imply that cI1 = cI2 for all I. Apply this to I for which i1 �= i2 and we get

c(00i3i4...in) = c(11i3i4...in)
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for all (i3i4 . . . in). It follows that |ψ ′〉 factors as a product

|ψ ′〉 = (|00〉 + |11〉) ⊗ |φ〉,
where |φ〉 is an (n − 2)-qubit state. Therefore, |ψ〉 is a product of a singlet state in the first
two qubits times a state in the remaining qubits. �

Lemma 3.8. If Aj |ψ〉 = i|ψ〉 then the j th qubit is unentangled.

Proof. Renumber the qubits, if necessary, so that j = 1. By (1), the hypothesis A1|ψ〉 = i|ψ〉
implies that if cI �= 0 then i1 = 0. Therefore, |ψ〉 factors as a product

|ψ〉 = |0〉 ⊗ |φ〉,
where |φ〉 is an (n − 1)-qubit state vector. �

Proposition 3.9. If the dimension of the span of a triple together with the rightmost column
−i|ψ〉 is 3, then the state factors as an unentangled qubit times a state in the remaining qubits.

Proof. Let Tj be a triple such that dim〈Tj ∪{−i|ψ〉}〉 = 3. Since i|ψ〉 lies in the span of 〈Tj 〉,
we may write

i|ψ〉 = αAj |ψ〉 + βBj |ψ〉 + γCj |ψ〉
for some real α, β, γ . Choose R ∈ SO(su(2)) such that

R(A) = αA + βB + γC.

Since the adjoint representation Ad: SU(2) → SO(su(2)) is surjective, we can choose
Uj ∈ SU(2) such that Ad

(
U

†
j

) = R, that is, U
†
j XUj = R(X) for all X ∈ su(2). For

1 � k � n, k �= j , set Uk equal to the identity. Finally, let U ∈ G = SU(2)n be U = ∏n
i=1 Ui .

We have

U †AjU |ψ〉 = i|ψ〉.
Applying U to both sides, we obtain

AjU |ψ〉 = iU |ψ〉.
Applying lemma 3.8 to the matrix M ′ for the state U |ψ〉 shows that the j th qubit is unentangled
for the state U |ψ〉. Since unentanglement of a particular qubit is local unitary invariant, the
proposition is established. �

Proposition 3.10. Rank of unentangled triples: If a state has k unentangled qubits, the rank
of the union of the triples corresponding to those qubits together with the rightmost column
−i|ψ〉 of M is 2k + 1.

Proof. Let |ψ〉 be a state vector for a state with k unentangled qubits, and let us renumber the
qubits, if necessary, so that the unentangled qubits are numbered 1 through k. The state vector
|ψ〉 is local unitary equivalent to a state vector

|ψ ′〉 = |00 · · · 0〉 ⊗ |φ〉,
where |00 · · · 0〉 is the product of k unentangled qubits and |φ〉 is an (n − k)-qubit state. Let
M ′ be the matrix associated with |ψ ′〉,M1 the matrix for |00 · · · 0〉, and M ′′ the matrix for
the single qubit state |0〉. Apply proposition 3.6 (i) to |00 · · · 0〉 = |0〉 ⊗ · · · ⊗ |0〉 to get
rankRM1 = 2k + 1 (using the fact that the single qubit state |0〉 has rankRM ′′ = 3). Then
apply proposition 3.6 (ii) to the set S1 which is the union of the first k triples of the matrix
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M ′ together with the column −i|ψ ′〉 to get dim〈S1〉 = rankRM1 = 2k + 1. Finally, apply
proposition 3.1 to conclude that the desired statement holds for |ψ〉. �

4. Minimum dimension orbit classification

Now we prove that any state with a minimum orbit dimension is a product of singlets for n
even, times an unentangled qubit for n odd.

Main Lemma 4.1. For n � 2, if M has minimum rank, then there is some pair of triples
whose span is three-dimensional.

Proof. Suppose not. A consequence of proposition 3.4 is that every pair of triples spans either
three, five or six dimensions. We can rule out the possibility that some pair of triples spans five
dimensions, as follows. If there is a pair Tl, Tl′ of triples which spans five dimensions, then by
proposition 3.2, the pair contributes four independent column vectors which are orthogonal to
every column vector in the set S = C\(Tl ∪Tl′). Applying proposition 3.5 to S with q = n−2,
we have

rank M � 4 +




3q

2
+ 1 n even

3q + 1

2
+ 1 n odd

=




3n + 2

2
+ 1 n even

3n + 3

2
+ 1 n odd

which is greater than minimum, and therefore impossible.
Thus we need to consider only the case where every pair of triples spans six dimensions.
Let T = {

Tj1 , Tj2 , . . . , Tjm

}
be a set of m triples minimal with respect to the property

dim
〈
Tj1 , Tj2 , . . . , Tjm

〉
< 3m

(‘minimal’ means that T contains no proper subset of triples which satisfy the given property;
thus, any subset of m′ < m triples of T has ‘full’ span of 3m′ dimensions). We know
such a T exists since the rank of M is minimum. Apply proposition 2.3 to get a subset
K ⊆ {j1, j2, . . . , jm} with some even positive number m′ of elements and vectors |ζk〉, |ηk〉 in
Tk for k ∈ K . Let T ′ = ⋃

k∈K Tk and let S = C\T ′ be the union of the q = n − m′ triples not
in T ′ together with the rightmost column −i|ψ〉 of M.

If m′ < m, the minimality of T guarantees that the 2m′ vectors {|ζk〉, |ηk〉}k∈K are
independent, so the rank of M is at least (apply proposition 3.5 to S with q = n − m′)

rank M � 2m′ +




3q

2
+ 1 n even

3q + 1

2
+ 1 n odd

=




3n + m′

2
+ 1 n even

3n + 1 + m′

2
+ 1 n odd

which is greater than minimum, so this case cannot occur.
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If m′ = m, the minimality of T guarantees that at least 2(m′ − 1) of the vectors in
{|ζk〉, |ηk〉}k∈K are independent, so the rank of M is at least

rank M � 2(m′ − 1) +




3q

2
+ 1 n even

3q + 1

2
+ 1 n odd

=




3n + m′ − 4

2
+ 1 n even

3n + 1 + m′ − 4

2
+ 1 n odd.

If m′ > 4, this is greater than minimum, so we may assume that m′ = m � 4.
We rule out the possibility m = 2, since every pair of triples spans six dimensions, so the

only remaining case is m′ = m = 4. We may further assume that every minimal set of triples
that has less than full span consists of m = 4 triples, and that applying 2.3 to such a set yields
m′ = 4. Thus the columns of M decompose into a disjoint union

C = S0 ∪ T1 ∪ T2 ∪ · · · ∪ Tt ,

where each Ti is a union of four triples for which applying proposition 2.3 yields six
independent vectors orthogonal to 〈C\Ti〉, and S0 is a union of q = n − 4t triples together
with the rightmost column −i|ψ〉 of M such that the span of the union of the triples in S0 is
3q-dimensional.

We consider the cases q � 2, q = 0, and finally q = 1.
If q � 2, then we have

rank M � 6t + 3q = 6

(
n − q

4

)
+ 3q = 3n + 3q

2

which is greater than minimum, so this case cannot occur.
If q = 0 or q = 1, let S1 = S0 ∪ T1 and consider the disjoint union

C = S1 ∪ T2 ∪ · · · ∪ Tt

of the set S1 with t ′ = t − 1 unions of four triples {Ti}ti=2.
If q = 0,S1 has a span of at least nine dimensions, since any three of the triples in T1

have full span. We have

rank M � 9 + 6t ′ = 9 + 6

(
n − 4

4

)
= 3n + 6

2

which is greater than minimum, so this case cannot occur.
If q = 1, then S1 is the union of five triples together with the rightmost column −i|ψ〉. If

any subset of four of those five triples has full span, then we have

rank M � 12 + 6t ′ = 12 + 6

(
n − 5

4

)
= 3n + 9

2

which is greater than minimum, so it must be the case that all subsets of four triples have less
than full span, so any subset of four triples contributes six independent vectors orthogonal to the
remaining triple and the rightmost column −i|ψ〉 of M. If any one of the qubits corresponding
to one of the five triples is not unentangled, then by proposition 3.9 we have

rank M � 6 + 4 + 6t ′ = 10 + 6

(
n − 5

4

)
= 3n + 5

2
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which is greater than minimum, so it must be the case that all five qubits are unentangled. But
then by proposition 3.10, we have

rank M � 11 + 6t ′ = 11 + 6

(
n − 5

4

)
= 3n + 7

2

which is greater than minimum.
Since all possible cases lead to contradictions, we conclude that some pair of triples must

have a three-dimensional span. �

Corollary 4.2. Any state which has minimum orbit dimension is a product of singlets when n
is even, together with an unentangled qubit when n is odd.

Proof. Let |ψ〉 be a state vector for a state with minimum orbit dimension, with associated
matrix M. Apply lemma 4.1 to M to get a pair of triples whose span is three-dimensional. By
proposition 3.7, |ψ〉 factors as a product of a singlet in those two qubits times an (n− 2)-qubit
state, say, with state vector |ψ1〉, in the remaining qubits. Let M1 be the matrix associated
with |ψ1〉. By proposition 3.6 (i), M1 also has minimum rank. Repeating this reasoning yields
a sequence |ψ〉, |ψ1〉, |ψ2〉, . . . which eventually exhausts all the qubits of |ψ〉 unless n is odd,
in which case a single unentangled qubit remains. �

Next, we classify states with minimum orbit dimension up to local unitary equivalence.

Proposition 4.3. Separation of singlet products. Products of singlets are local unitary
equivalent if and only if the choices of entangled pairs are the same in each product.

Proof. If |ψ〉 is a product of singlets for which some pair of qubits, say qubits 1 and 2, forms
a singlet, then |ψ〉 is of the form |α〉 ⊗ |β〉, where |α〉 is a singlet in qubits 1 and 2. Clearly,
any state local unitary equivalent to |ψ〉 is also of this form. �

The following classification theorem summarizes the results of this section.

Theorem 4.4. Classification of states with minimum orbit dimension. An n-qubit pure state
has minimum orbit dimension 3n/2 (n is even) or (3n + 1)/2 (n is odd) if and only if it is a
product of singlets, together with an unentangled qubit for n odd. Furthermore, two of these
states which do not have the same choices for pairs of entangled qubits are not local unitary
equivalent.

5. Conclusion

The classification of types of quantum entanglement is a difficult but central problem in the
field of quantum information. Entanglement types partially distinguish themselves by their
local unitary orbit and their orbit dimension. As an integer that can be readily calculated for a
given quantum state, orbit dimension is a convenient LU invariant. It provides a useful ‘first
stratification’ of the quantum state space, which suggests a two-step program for entanglement
classification. The first step is to understand the possible orbit dimensions for a composite
quantum system, and the second step is to understand the types of entanglement that occur
in each orbit dimension. For pure states of n-qubits, the first step was achieved in [8]. The
present work completes the second step for the orbits of the minimum dimension. In particular,
states with minimum orbit dimension are precisely products of pairs of qubits, each pair in a
singlet state (or LU equivalent). While there is much work left to be done in the second step
of the classification program, it is worth remarking that the present results, dealing with an
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Table 1. Corresponding equation and statement numbers in [8].

Number in this paper Number in [8]

(1) (10)
(2) (11)
(3) (12)
(4) (13)
(5) (1)
2.1 3.3
(6) (14)
2.2 5.1
2.3 6.1
2.4 5.3
2.5 6.2
2.6 7.2
2.7 7.1

arbitrary number of qubits, give some hope that a meaningful classification of entanglement
for n qubits is possible.

Reduced orbit dimension states appear to be the most interesting states. Carteret and
Sudbery [7] pointed out that reduced orbit dimension states (which they call ‘exceptional
states’) must have extreme values of the local unitary invariants that are used in the construction
of all measures of entanglement. They concluded that reduced orbit dimension states should be
expected to be particularly interesting and important. Subsequent studies have confirmed this
expectation. All of the ‘famous’ states that theorists use for examples and that experimentalists
try to exhibit in the laboratory have reduced orbit dimension (examples include the EPR singlet
state, the GHZ state, unentangled states, the W state, and n-cat states). Both the most entangled
states and the least entangled states have reduced orbit dimension.

Orbit dimension provides a useful first step in entanglement classification, but the
numerical value of orbit dimension, beyond providing a sense of how rare an entanglement
type is, does not carry a simple physical meaning. For example, in the case of pure three-qubit
states [7, 9], the minimum orbit dimension is 5 and the maximum orbit dimension is 9. States
with orbit dimension 5 consist only of products of a singlet pair and a qubit, orbit dimension
6 contains the unentangled states, orbit dimension 7 contains GHZ states as well as products
of generic two-qubit states with an unentangled qubit, orbit dimension 8 contains the W state,
and orbit dimension 9 contains all generic states.

Minimum orbit dimension states have the most symmetry with respect to local
transformations in that they remain invariant under a larger class of transformations than
any other states. They are maximal symmetry generalizations of the spin singlet state, which
is invariant (as a quantum state, not an entanglement type) to any rotation applied identically to
both spins. The present result, that the n-qubit maximal symmetry generalizations of the two-
qubit singlet state are themselves products of singlets, shows a special role for the two-qubit
singlet state in the theory of n-qubit quantum entanglement.

Linden, Popescu and Wootters [10, 11] have shown that almost all pure n-qubit quantum
states lack essential n-qubit quantum entanglement in the sense that they can be reconstructed
from their reduced density matrices. It appears likely (and is known in the three-qubit case)
that states with essential n-qubit entanglement are found among the reduced orbit dimension
states. The present work shows that minimum orbit dimension states do not exhibit essential
n-qubit entanglement for n � 3. Rather, minimum orbit dimension states maximize pairwise
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entanglement. We conjecture that states with minimum orbit dimension among non-product
states have essential n-qubit entanglement in the sense of [10, 11].
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Appendix. Equation and statement numbers in [8]

Table 1 gives a list of equation and statement numbers in the present paper with their matching
numbers in [8].
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